The demand and distribution of hydrogen

The demand for hydrogen

Supplying hydrogen to industrial users is now a major business around the world. Demand for hydrogen, which has grown more than threefold since 1975, continues to rise – almost entirely supplied from fossil fuels, with 6% of global natural gas and 2% of global coal going to hydrogen production.

As a consequence, production of hydrogen is responsible for CO2 emissions of around 830 million tonnes of carbon dioxide per year, equivalent to the CO2 emissions of the United Kingdom and Indonesia combined.


Global demand for pure hydrogen, 1975-2018:






Hydrogen is already widely used in some industries, but it has not yet realized its potential to support clean energy transitions. Ambitious, targeted and near-term action is needed to further overcome barriers and reduce costs.


The Distribution of hydrogen:

Most hydrogen used in the United States is produced at or close to where it is used—typically at large industrial sites. The infrastructure needed for distributing hydrogen to the nationwide network of fueling stations required for the widespread use of fuel cell electric vehicles still needs to be developed. The initial rollout for vehicles and stations focuses on building out these distribution networks, primarily in southern and northern California.

Currently, hydrogen is distributed through three methods:

  • Pipeline: This is the least-expensive way to deliver large volumes of hydrogen, but the capacity is limited because only about 1,600 miles of pipelines for hydrogen delivery are currently available in the United States. These pipelines are located near large petroleum refineries and chemical plants in Illinois, California, and the Gulf Coast.

  • High-Pressure Tube Trailers: Transporting compressed hydrogen gas by truck, railcar, ship, or barge in high-pressure tube trailers is expensive and used primarily for distances of 200 miles or less.

  • Liquefied Hydrogen Tankers: Cryogenic liquefaction is a process that cools hydrogen to a temperature where it becomes a liquid. Although the liquefaction process is expensive, it enables hydrogen to be transported more efficiently (compared with high-pressure tube trailers) over longer distances by truck, railcar, ship, or barge. If the liquefied hydrogen is not used at a sufficiently high rate at the point of consumption, it boils off (or evaporates) from its containment vessels. As a result, hydrogen delivery and consumption rates must be carefully matched.

Creating an infrastructure for hydrogen distribution and delivery to thousands of future individual fueling stations presents many challenges. Because hydrogen contains less energy per unit volume than all other fuels, transporting, storing, and delivering it to the point of end-use is more expensive on a per gasoline gallon equivalent basis. Building a new hydrogen pipeline network involves high initial capital costs, and hydrogen's properties present unique challenges to pipeline materials and compressor design. However, because hydrogen can be produced from a wide variety of resources, regional or even local hydrogen production can maximize use of local resources and minimize distribution challenges.

There are tradeoffs between centralized and distributed production to consider. Producing hydrogen centrally in large plants cuts production costs but boosts distribution costs. Producing hydrogen at the point of end-use—at fueling stations, for example—cuts distribution costs but increases production costs because of the cost to construct on-site production capabilities.

Government and industry research and development projects are overcoming the barriers to efficient hydrogen distribution. 


Comments